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Abstract
A classical 2D clock model is known to have a critical phase with Berezinskii–
Kosterlitz–Thouless (BKT) transitions. These transitions have logarithmic
corrections which make numerical analysis difficult. In order to resolve this
difficulty, one of the authors has proposed a method called ‘level spectroscopy’,
which is based on the conformal field theory. We extend this method to the
multi-degenerated case. As an example, we study the classical 2D six-clock
model which can be mapped to the quantum self-dual 1D six-clock model.
Additionally, we confirm that the self-dual point has a precise numerical
agreement with the analytical result, and we argue the degeneracy of the
excitation states at the self-dual point from the effective field theoretical point
of view.

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.Fr

1. Introduction

Although low-dimensional spin systems with a continuous rotational symmetry, such as the
2D XY spin model, do not have a symmetry breaking phase at finite temperatures, it does not
mean the absence of phase transitions. Actually Berezinskii [1] and Kosterlitz and Thouless
[2] have pointed out a phase transition induced by vortex–antivortex excitation in the 2D XY
model, which is known as the Berezinskii–Kosterlitz–Thouless (BKT) transition.

The classical 2D clock model, which has a discrete rotational symmetry, is also known
to have a BKT critical region. José et al [3] have studied the 2D classical p-state clock model
by the renormalization group analysis and pointed out the presence of the intermediate BKT
critical phase for sufficiently large p. Elitzur et al [4] have found strong evidence for existence
of a massless region, that is a BKT critical region, for p � 5. To estimate the mass gap,
they used a correlation inequality and duality. Henceforth, duality means the exchange of a
high-temperature region and low-temperature region. They also mentioned that the duality in
a finite system requires a simple relation between a charge symmetry and boundary conditions.
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We map the 2D p-clock model onto its quantum 1D p-clock model and analyse the
latter. This is based on the fact that the (1 + d)-dimensional classical statistical mechanics
can be mapped onto the d-dimensional quantum statistical mechanics. Here, we should be
careful that the 2D classical clock model does not have self-duality explicitly, but its quantized
Hamiltonian has self-duality. It may seem strange, but thinking of the universality class, that
is, the Zp Villain model, which is known to have self-duality, and the 2D classical p-clock
model belong to the same universality class, the self-duality of the quantum clock model is
acceptable. Such an argument has been done in [4]. Also the corresponding field theoretical
model (the dual sine-Gordon model) has self-duality. We will see an excellent numerical result
about the self-duality.

Generally, the BKT transition points were difficult to determine numerically because
of the logarithmic corrections and the anomalous divergence of the correlation length. To
resolve these difficulties, the level spectroscopy method [5, 6] has been proposed. Near a BKT
transition point, some scaling dimensions change from relevant to irrelevant or vice versa.
Choosing some appropriate scaling dimensions, we can determine the BKT transition point
by the crossing point of these scaling dimensions. In addition, we can eliminate logarithmic
corrections accompanying the BKT transition. Therefore we can accurately determine the
numerical BKT transition points.

So far the level spectroscopy has been applied to the three cases. The first case is between
the BKT critical phase and the phase of the non-degenerate ground state [6, 7]. The second is
between the BKT critical phase and the phase of twofold degenerate ground state [5]. The third
is between the BKT critical phase and the multi-degenerated ground state phase. Recently,
Tonegawa et al [8] studied the 1/3 plateau problem of the S = 1

2 antiferromagnetic XXZ chain
with the Z3 symmetry breaking and Otsuka et al [9] studied the 2D AF three-state Potts model
with the Z6 symmetry breaking case.

In this paper, we apply the level spectroscopy of the multi-degenerated case [8, 9] to
the 1D quantum six-clock model with duality and use the duality relation to check the level
spectroscopy results between the BKT critical phase and the multi-degenerated ground state
from another point of view than former studies. In addition, we discuss the degeneracy at the
self-dual point from the field theoretical point of view. The self-dual point of this model is
trivial but it will be important in the 2D AF three-state Potts model [9] which has no explicit
self-duality.

2. Theory

2.1. Discrete model

In this subsection, we review the 1D quantum p-state clock model with a nearest-neighbour
interaction as a Hamiltonian limit of a 2D classical p-state clock model on a square lattice.
The 2D classical Hamiltonian is

H = −β
∑
〈i,j〉

{Js[cos(�i,j − �i+1,j ) − 1] + Jτ [cos(�i,j − �i,j+1)]}, (1)

where �i,j = (2πr/p), r = 0, 1, . . . , p − 1, is the clock spin variable. When we define λ

to satisfy the equation λβJs = e−2βJτ [cos(2π/p)−1] and take the Hamiltonian limit βJs → 0,

βJτ → ∞ with λ fixed [10], we obtain the 1D quantum Hamiltonian [4, 10]

H = −2
N∑

n=1

{λ cos(�̂n − �̂n+1) + cos p̂nx}, (2)
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where λ is the transverse field of the system. It can be interpreted as the inverse of the
temperature. See [11, 17] for a more detailed derivation.

When we define the operators σn, �n as σn = exp i�̂, �n = exp ip̂, we obtain another
representation of the 1D quantum Hamiltonian (2) as

H = −
L∑

n=1

{
λ
(
σnσ

+
n+1 + σ +

n σn+1
)

+ �n + �+
n

}
, (3)

where

σn =




1
ω

ω2

. . .

ωp−1




, �n =




0 1
1 0

1 0
. . .

. . .

1 0




, ω = exp(2π i/p)

in the σn diagonal representation. These operators satisfy (σn)
p = (�n)

p = 1.
This model has a Zp symmetry. The corresponding Zp charge operator is defined as

UQ =
L∏

n=1

�n, (4)

which commutes with the Hamiltonian (3). UQ has eigenvalues ωQ,Q = 0, 1, . . . , p − 1.
Because of the conservation, UQ splits eigenspaces of H into the charge sectors whose
corresponding eigenspaces are labelled by Q = 0, 1, · · · , p − 1, i.e. H is able to be block-
diagonalized.

Also we can block-diagonalize it with the toroidal boundary conditions

σN+1 = exp

(
2π i

p
Q̃

)
σ1, Q̃ = 0, 1, . . . , p − 1. (5)

Q̃ = 0 is the periodic boundary condition and Q̃ = p/2 (p even) is the twisted boundary
condition. Hereafter we will assume that p is even. Implementing the twisted boundary
condition to the system corresponds to adding a half-charge to the sine-Gordon model [7, 12]
which is the continuum limit of the discrete model.

There exists a unitary operator such that σn is transformed into �+
n and also �n is

transformed into σn. For example we can take its matrix elements as

Ui,j = 1√
p

ω(1−i)(1−j). (6)

This operator U gives the relation

UσnU
+ = �+

n, (7)

U�nU
+ = σn. (8)

By this relation, we get another representation of the 1D quantum Hamiltonian as

H ′ = −
L∑

n=1

{
λ

(
�n�

+
n+1 + �+

n�n+1
)

+ σn + σ +
n

}
. (9)

In this case, note that the Zp charge operator should be

U ′
Q = UUQU+ =

L∏
n=1

σn. (10)
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The form (9), (10) is more useful for numerical calculation than the previous form (3), when
we choose the σn diagonal representation.

There is another non-local transformation between σ and �:

σn → σ̃n = �n+1�
+
n for n < N

σN → σ̃N = �+
N

�n → �̃n =
n∏

l=1

σl.

(11)

Applying this transformation to the Hamiltonian (9) and with the help of

�̃n�̃
+
n+1 =

n∏
l=1

σl

n+1∏
l=1

σ +
l = σ +

n+1, (12)

we get the dual form of (9) as

−
L∑

n=1

[
λ
(
σ +

n + σn

)
+ �n�

+
n+1 + �+

n�n+1
]
. (13)

Therefore the 1D p-state quantum clock model satisfies the following duality relation:

H(λ) = λH(1/λ). (14)

The self-dual point is λc = 1.
The charge conjugation operator is defined as

C =
L∏

n=1

cn, cn =




1 0
0 0 1

. . . 1

0 1
. . .

0 1 0




, (15)

which has eigenvalues ±1 and transforms σn and �n as

cnσnc
+
n = σ +

n (16)

cn�nc
+
n = �+

n . (17)

By this relation, it is easy to see that the Hamiltonians (3) and (9) commute with C.
Under the charge conjugation, Zp charge operator UQ satisfies

CUQC = U+
Q. (18)

So the eigenvalues ωQ of UQ become ω−Q, that is, generally the eigenstates of UQ are not
those of C. But the eigenstates of Q = 0, p/2 are invariant under this transformation; therefore
these eigenstates have eigenvalues C = ±1. We will use this fact to classify the eigenstates.

2.2. Effective model

As an effective theory of a 1D quantum spin system, the sine-Gordon model has been studied.
Here, we will explain the Zp dual sine-Gordon model [13]

L = 1

2πK
(∇φ)2 +

yφ

2πα2
cos

√
2φ +

yθ

2πα2
cos p

√
2θ, (19)
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where K is also the inverse of temperature as λ, α is an ultraviolet cutoff and φ and θ are
periodic:

φ = φ +
2π√

2
, (20)

θ = θ +
2π√

2
. (21)

The field θ is dual to φ and they satisfy the relation

∂xφ = −∂y(Kθ), ∂yφ = ∂x(Kθ). (22)

This model is the effective model for the Hamiltonians (3) and (9).
Vertex operators are defined as

Om,n = exp(im
√

2θ) exp(in
√

2φ). (23)

When yφ = yθ = 0, their scaling dimensions are

xm,n(K) = 1

2

(
n2K +

m2

K

)
. (24)

In a high-temperature region (K small) the second term of (19) is more relevant than the
third term. So the renormalization group behaviour in the high-temperature region can be
studied through the Lagrangian

Lhigh = 1

2πK
(∇φ)2 +

yφ

2πα2
cos

√
2φ. (25)

When K = 4 this sine-Gordon model shows the BKT transition, and this is studied by the
level spectroscopy [7]. On the other hand, in the low-temperature region the second term of
(19) is more irrelevant than the third term. Then we deal with the sine-Gordon Lagrangian

Llow = K

2π
(∇θ)2 +

yθ

2πα2
cos p

√
2θ (26)

with the Zp symmetry breaking term. Here we got the first term by substituting (19) into (22).
Under the change of the cutoff α → elα and parameterizing K/4 = 1 + y0/2, the

renormalization group equations for (25) are

dy0(l)

dl
= −y2

φ(l),
dyφ(l)

dl
= −yφ(l)y0(l), (27)

where l is related to el = L for the finite system size. Here, yφ = 0 is a fixed points line, yφ

is irrelevant for y0 > 0 and relevant for y0 < 0. In the region |yφ| < y0, the renormalization
group trajectories flow to the line of yφ = 0 for l → ±∞. On the other hand, for |yφ| > y0,
the renormalization group trajectories flow to yφ = ±∞. The line of yφ(l) = ±y0(l) is the
BKT critical line, and on this line, y0(l) behaves as 1/l (= 1/ ln L).

Similarly, for the case (26), by parameterizing K−1p2/4 = 1 + y0/2 and using yθ instead
of yφ , we get the renormalization equations

dy0(l)

dl
= −y2

θ (l),
dyθ (l)

dl
= −yθ (l)y0(l). (28)

In this case, we can make the same argument as before, replacing yφ(l) with yθ (l) in
equations (27).

In the high-temperature limit λ → 0 (or K → 0) this model has a non-degenerated
ground state. The transition point between the non-degenerated ground state phase and the
BKT critical phase can be determined by the K = 4 version of the level spectroscopy. In this
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Table 1. Operator content of the K = p2/4 sine-Gordon model with Zp symmetry breaking term.
TBC is short for the twisted boundary condition. Others are under periodic boundary condition. t
is defined by yθ = ±y0(1 + t). Marginal-like and cos(

√
2pθ)-like hybridize [6] because they have

the same quantum numbers.

Quantum number
Scaling dimension Renormalized scaling

Field Q C BC xm,n dimension

exp(im
√

2θ) m �= p/2, p PBC xm,0
2m2

p2

(
1 + 1

2 y0(l)
)

cos(
√

2pθ/2) p/2 1 PBC xp/2,0
1
2

(
1 + 1

2 y0(l) + yθ (l)
)

sin(
√

2pθ/2) p/2 −1 PBC xp/2,0
1
2

(
1 + 1

2 y0(l) − yθ (l)
)

Marginal-like 0 1 PBC xmarg 2 − y0(l)
(
1 + 4

3 t
)

cos(
√

2pθ)-like p = 0 1 PBC xp,0 2 + 2y0(l)
(
1 + 2

3 t
)

sin(
√

2pθ) p = 0 −1 PBC xp,0 2 + y0(l)

cos(
√

2φ/2) 0 1 TBC x0, 1
2

p2

32

(
1 − 1

2 y0(l)
)

sin(
√

2φ/2) 0 −1 TBC x0, 1
2

case, the renormalized scaling dimensions have been given in [7]. On the other hand, in the
low-temperature limit λ → ∞, the model has a p-fold degenerated ground state. In this case,
the simple K = 4 version of the level spectroscopy is no longer available. The BKT critical
transition point can be determined by the K = p2/4 version of the level spectroscopy, which
we will explain in subsection 3.2 (see also [6, 9]). The renormalized scaling dimensions near
K = p2/4 are shown in table 1 (note that implementing TBC is the same as introducing
a half-charge into the effective model [12]). Assuming conformal invariance, the scaling
dimensions xm,n are related to the energy gaps of the finite size system with periodic boundary
conditions as

xm,n = L

2πv
(Em,n(L) − Eg(L)), (29)

where L is the system size, Eg(L) is the ground state energy and v is the velocity of the system
[14]. And the central charge c, which we will use to confirm the universality class of the
system, is given by the finite size correction of the system as

Eg(L) = egL − πvc

6L
, (30)

where eg is the bulk ground state energy per site [15].
At last, we discuss the dual transformation in this dual sine-Gordon model, corresponding

to the discrete cases (11) and (14). When we apply the dual transformation

φ → pθ, pθ → φ (31)

to the dual sine-Gordon model (19), we get the dual form

Ldual = p2

2πK
(∇θ)2 +

yφ

2πα2
cos p

√
2θ +

yθ

2πα2
cos

√
2φ. (32)

When we substitute (22) into (32), we obtain the same form as (19) aside the coefficients;
setting yφ = yθ and p = K , we get the same equation as (19) including the coefficients. This
is the self-dual point of the dual sine-Gordon model. Note that with the dual transformation
(31), fields in table 1 are exchanged as cos

√
2pθ/2 ↔ cos

√
2φ/2 etc. These exchanges

mean the degeneracy of the excitation spectra at the self-dual point.
The quantum discrete model has the self-dual point (14), and now this self-duality is

extended to the continuum model. In the following section, we numerically estimate the
self-dual point with good precision.



BKT transitions in the six-state clock model 2959

0.351340

0.351345

0.351350

0.351355

0.351360
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∆
E

λ

L=10 with PBC
L=10 with TBC

Figure 1. The crossing point for L = 10 in lower λ.

3. Numerical results

In the previous section we have argued the general p-state clock model. In this section we show
the numerical results for the p = 6 case. The energy spectra labelled by Q and Q̃ = 0, p/2
are obtained by the Lanczos method. The system size is up to L = 10.

First, we determine the two BKT transition points. These points have essentially a
different property, because one is located between the non-degenerate ground state phase and
the BKT critical phase, while the other is located between the sixfold degenerate ground states
phase and the BKT critical phase.

Next, to confirm the universality class of the BKT critical phase, we calculate the ratio of
the scaling dimensions, the central charge c and the parameter K of the sine-Gordon model.
Additionally, we discuss a level crossing at the self-dual point.

3.1. The BKT transition point in lower λ

The BKT transition point between the non-degenerate ground state phase and the BKT critical
phase is given by the level crossing of the following energy gaps [7]:

x2,0 = L

2πv
E(Q = 2, PBC), (33)

x0, 1
2

= L

2πv
E(Q = 0, TBC, C = 1). (34)

E is an energy gap between the ground state and the excitation state labelled by Q and
Q̃ = 0, p/2. A periodic boundary condition (PBC) corresponds to Q̃ = 0, and a twisted
boundary condition (TBC) corresponds to Q̃ = p/2. The ground state has Q = 0, C = 1
with PBC.

Figure 1 shows the crossing point for L = 10. On the BKT transition point, we can
eliminate logarithmic corrections including higher terms by the level spectroscopy, but still
we have finite size corrections due to the irrelevant field L−2L̄−21 (x = 4) [14] which behaves
in the order of 1/L2, 1/L4, etc. In figure 2, we show the extrapolation of the level crossing as
L tends to infinity. The result is λ = 0.781 83.
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 0.783

 0  0.005  0.01  0.015  0.02  0.025  0.03
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L=6,7,8,9,10
extrapolatin

Figure 2. The lower BKT transition point. The extrapolated value is λ =0.781 83.

3.2. The BKT transition point in upper λ

From table 1, on the BKT critical line yθ (l) = −y0(l), we find xp/2,0 : x0,1/2 = p2/32 : 1/2
including the 1/ ln L correction. Therefore from equation (29), the crossing point

p2

16

L

2πv
E(Q = p/2, PBC, C = 1) = L

2πv
E(Q = 0, TBC, C = 1) (35)

gives the BKT critical point. Simultaneously, the logarithmic corrections are eliminated. This
is the advantage of the level spectroscopy method.

From above, for p = 6, the upper BKT critical point between the sixfold degenerate
ground state phase and the critical phase is given by the crossing point of the following scaling
dimensions [6, 9]:

9

4
x3,0 = 9

4

L

2πv
E(Q = 3, PBC, C = 1), (36)

x0, 1
2

= L

2πv
E(Q = 0, TBC, C = 1). (37)

For Q = 0, 3, the charge conjugation C can be a good quantum number as mentioned at the
end of subsection 2.2.

The crossing point is shown in figure 3 for L = 10. This crossing eliminates the
logarithmic correction order ofO(1/ ln L). But still higher order corrections like O(1/(ln L)2)

may remain in this case. Anyway we extrapolate the BKT transition point for the large limit
of the system size L as in figure 4. We obtain λ = 1.2851.

The product of λupper and λlower can be used to check the consistency of the self-duality;
that is, λupper · λlower should be unity. Actually, from the numerical data, we get

λupper · λlower = 1.0047. (38)

3.3. Universality class

3.3.1. Duality. We numerically calculate the change of K via λ by the ratio of scaling
dimensions:

E(Q = 3, PBC, C = 1)

E(Q = 0, TBC, C = 1)
= x3,0

x0, 1
2

= 36/K2. (39)
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Figure 3. The crossing point for L = 10 in upper λ.
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Figure 4. The upper BKT transition point. The extrapolated value is λ = 1.2851.

This ratio may have the logarithmic correction O(1/(ln L)2) in the vicinity of the BKT
transition points. But at the self-dual point, E(Q = 3, PBC, C = 1) and E(Q = 0,

TBC, C = 1) exactly degenerate; therefore K = 6. In fact, in figure 5, the excitations
E(Q = 3, PBC, C = 1) and E(Q = 0, TBC, C = 1) precisely cross at λ = 1. This is
because at the self-dual point the dual sine-Gordon model has the higher symmetry discussed
in (31) and (32).

This crossing at λ = 1 is consistent with the duality in the discrete model,

H
Q̃
Q (λ) = λH

Q

Q̃
(1/λ), (40)

where H
Q̃
Q is a sector Hamiltonian labelled by Q and Q̃ [4, 16].

We emphasize that our novel point is not the degeneracy but the connection of the discrete
Zp model and the Zp dual sine-Gordon model.

Even though when one studies another lattice model which does not have self-duality
explicitly, but if it could be mapped to the dual sine-Gordon model, one can check the self-
dual point of the dual sine-Gordon model through this level crossing. For example, such an
approach will be useful in the vicinity of the multicritical point studied by Otsuka et al [9].
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Figure 5. Level crossing occurs exactly at the self-dual point λ = 1. These levels are
E(Q = 3, PBC, C = 1) and E(Q = 0, TBC, C = 1) for L = 10. The other system
sizes also show the exact crossing.
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Figure 6. Ratio of scaling dimensions x2,0/x1,0. In the BKT critical region the ratio x2,0/x1,0 
 4.

3.3.2. Ratio of scaling dimensions. The ratio of scaling dimensions

x2,0

x1,0
= E(Q = 2, PBC)

E(Q = 1, PBC)
= 4 + O(L−2) + higher order terms (41)

is also useful to check the universality class of the BKT critical region. The finite correction
behaves in the order of O(L−2). Figure 6 shows this ratio.

3.3.3. Central charge. Generally, in a BKT critical region a renormalization equation flows
to the Gaussian fixed line. Therefore the universality class of the BKT critical region agrees
with the Gaussian model. The Gaussian model is known to have the central charge c = 1, so
the BKT critical region is also characterized by c = 1 [17].

From the conformal field theory, the central charge is related to the ground state of the
finite system as [18]

Eg(L) = egL − πvc

6L

(
1 + O

(
1

(ln L)3

))
, (42)
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Figure 7. Effective central charge extrapolated from the finite system’s results.

where eg is a free energy per site and v is a velocity of the system. In this case the logarithmic
correction is small enough, so the central charge is numerically a good index of universality
class.

We calculate the effective central charge for the system size up to L = 10 and extrapolated
to L → ∞. In figure 7, we show the extrapolated values of the central charge. This result is
consistent with the two transition points which we have determined.

4. Conclusion

We have extended the level spectroscopy to determine the BKT critical point between the
multi-fold degenerated phase and the critical region. For a physical application we studied
the 1D quantum p-clock model which has the Zp symmetry. The numerical calculations were
performed for p = 6.

Also we discussed about the self-duality of the dual sine-Gordon model. The self-dual
point has been numerically determined without the logarithmic corrections. While this is trivial
in the clock model because the level crossing of E(Q = p/2, PBC) and E(Q = 0, TBC)

is the exact result from the self-duality at λ = 1, but this result also means that there is no
correction term in the language of the dual sine-Gordon model (19). On the other hand, the
BKT transition points that we have determined may have some correction, because we have
ignored irrelevant terms to derive (25) and (26) from (19). The self-duality approach will be
useful for other models which need highly accurate calculations, for instance, the cross-over
near the multicritical point dealt in [9].
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